DUAL WAVELENGTH WAVEPLATES

These dual wavelength multiple order waveplates are made a piece of quartz which has been precisely polished. Its thickness is controlled to provide half wave retardation at one wavelength and full wave retardation at a second wavelength.

They are offered for Nd:YAG harmonic wavelengths and can be used to separate the harmonic beams by means of a change in their state of polarization. A half wave plate has a net retardation of π and rotates the plane of polarization by 90°.

A full wave plate has a net retardation of 2π and rotates the plane of polarization by 180°. The two harmonics will therefore emerge with crossed linear polarizations.

Standard Specifications:

Optical Material:	Crystal Quartz
Diameter Tolerance:	+0.0, -0.2mm
Wavefront Distortion:	$\lambda/8$ peak to peak
Retardation Tolerance:	<λ/500
Wavelength Range	240-2100nm
Clear Aperture:	>90%
Parallelism:	<1 are second
Surface Quality:	20-10 scratch and dig
AR/AR Coating:	R>0.2% at central wavelengtht

Standard Dual-Wavelength Waveplates

Diameter (mm)	λ1(nm)	λ2(nm)	Product Number
25.4	355	1064	UQT-DWPC0201
25.4	532	1064	UQT-DWPC0202
25.4	1064	355	UQT-DWPC0203
25.4	1064	532	UQT-DWPC0204

Please Contact ultiQuest for other dimensions in prototype and production quantities.

NOTES!

- B Half wave retardation at λ 1,Full wave retardation at λ 2.
- The surface flatness is the reflected wavefront distortion of the surface before coating.
- Be sure to wear laser safety goggles when checking optical path and adjusting optical axis.